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The engineering background of the concept of 
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The concept of the so-called isoelastic implant is re-evaluated in three different aspects, using 
old and basic principles of mechanical engineering. All three are different approaches to the 
nut and bolt model. The results of these calculations confirm the welt-established engineering 
knowledge that all such essentially cylindrical interfaces necessarily result in a stress 
concentration in the area beginning (or ending) the load-transmitting interface closest to the 
point of load application if loaded axially, and that this concentration is more pronounced the 
more the situation of isoelasticity is approached. Some general conclusions as to the limits of 
the usefulness of the concept of isoelastic implants and some possible advantages of their 
applications are outlined in the discussion. 

1. Introduct ion  
Many modes of failure of bone, joint and tooth re- 
placements have been ascribed to the difference in 
stiffness of the implants in comparison to the host 
bone. The shear forces resulting from this mechanical 
mismatch create relative movements which, in turn, 
result in the formation of an interracial pseudo- 
arthrosis seam and subsequent loosening, necessit- 
ating the removal of the implant in many cases. 

Essentially three alternatives for avoiding the occur- 
rence of interracial shear movements have been 
suggested, evaluated experimentally, and studied clin- 
ically: 

(a) mechanical interlocking, 
(b) interfacial bond formation, 
(c) adjustment of the stiffness of the implant to that 

of the surrounding bone. 

The introduction of the PMMA bone cement by 
J. Charnley in 1960 can be regarded as one of the early 
attempts (and a most successful one) to achieve an 
interface stability by interlocking [1, 2]. But the 
formation and reliability of the close bone contact 
around this cement is compromised not only by its 
thermal and chemical properties, but also by the 
unpredictability of the details of the interfaciat shape. 
The absence of thermal and chemical influences with 
bioinert materials like alumina ceramics [3] allowed 
for more detailed evaluations of the remodelling pro- 
cesses solely controlled by the stress and strain field 
created by the insertion of the implant [4]. The sub- 
sequent discovery of the "load-line shadow effect" [5] 
gave further insights about the possibilities and limits 
for achieving and maintaining a reliable interfacial 
interlocking along tangentially loaded interfaces [6]. 

* Now with Kimberly-Clark, Roswell, GA 30076, USA. 

The application of porous coatings to the surfaces of 
the anchoring portions of bone and joint replacements 
is another attempt to achieve a reliable fixation of 
bone substitutes [7]. 

The discovery of the bone bonding ability of some 
Ca phosphate-containing glasses and gtass- ceramics 
[8] and of some Ca phosphate ceramics [9] raised 
much hope for a new and improved mode of implant 
fixation, 

These two kinds of implant fixation have been 
based on the use of high-modulus metals or ceramics, 
resulting in an implant stiffness much higher than 
that of bone. Thus, if a close bone contact could be 
achieved and was to be maintained, the bond at the 
bone-to-implant interfaces must be strong enough to 
withstand all resultant shear forces. All relative move- 
ments necessary for load transfer without interracial 
shear movements have to be realized by elastic defor- 
mations of the surrounding bony tissue. 

The basic idea of the third, the isoelastic approach 
[10], can be regarded as an attempt not to rely 
completely on the shear-resisting ability of the inter- 
face and on the elastic deformability of the surround- 
ing bone. This third alternative must, of course, be 
combined with either the mechanical interlocking or 
the bonding approach or their combination (as at- 
tempted by coating undulated or porous surfaces with 
hydroxylapatite), at least along some portions of the 
interfaces, in order to allow for transmission of the 
functional loads. 

The feasibility of the concept of isoelastic implants 
has already been evaluated in some previous studies. 
Calculation of the stress distribution in the simulated 
bony environment of stems of total hip replacements 
in an extended, three-dimensional finite-element ana- 
lysis [11] and the evaluation of these results as a 
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function of the stem stiffness showed a marked in- 
crease of the stress concentrations in the calcar region 
with devices whose stiffness approaches that of the 
bone. In a finite-element analysis of the stress pattern 
around dental implants [121 and its dependence on 
the stiffness of the implant material, the highest stress 
concentrations were also found if the elastic modulus 
of the implant approached that of the host tissue. In a 
more generalized and basic finite-element analysis the 
stress and strain distribution in two :interlocking sys- 
tems were calculated [13]. The dependence of the 
interracial stresses on the stiffness differences also 
revealed markedly higher stress concentrations for the 
isoelastic case. This was confirmed in vivo by the 
histological evaluation of implants with mechanical 
properties closely resembling the situation on which 
the analysis was based. 

These above-mentioned previous discussions all 
used finite-element calculations. Thus, their results are 
essentially limited to the particular model chosen in 
these cases. It is the object of this study to evaluate the 
concept of isoelastic implants from some well-estab- 
lished basic principles of mechanical engineering [ 14]. 
Three different and relatively fundamental approaches 
will be used; the first is a straightforward treatment, 
the other two employ closed forward solutions of 
calculus. This will allow the establishment of rules of 
general validity on which further conclusions for indi- 
vidual groups of implants can then be based, such as 
the anchoring of hip and knee replacement, dental, or 
other load-bearing and transmitting implants. 

2. Isoelasticity in theoret ica l  mechan ic s  
Most devices, machines and tools in the field of mech- 
anical engineering are made of steel. Thus, all their 
components consist of materials with nearly identical 
elastic properties. If they are loaded unidirectionally 
and their load-bearing cross-sections are similar, they 
even have similar stiffnesses. 
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Figure 1 Nut and bolt model with homogeneously distributed 
forces acting on the bolt F B and supporting the nut F N (F B = f'N), 
the threads T and the interthread length l~. 

This same remaining force will have to be transmitted 
through the segment 11 of the nut as a pressure 
(normal stress) causing a length reduction of 

F -- dF 
diN1 = - - I  I 

ENAN 

Thus, if secondary effects like deformations of the 
steps themselves are disregarded, all forces will be 
concentrated completely on the first thread, because, 
otherwise, the next thread would lose contact. 

Somewhat more quantitatively, the total displace- 
ment along the interface between the first and the 
second threads will be (with 1/EBA B = I/SB and 
1lEnA N = 1IS y as stiffness coefficients, dS = Ss - SN, 

and replacing SB by S N + dS) 

2.1. The  nu t  and  bol t  m o d e l  
The nut and bolt combination can be regarded as one 
of the most widely used means of fixation. In the 
schematic cross-sectional representation of Fig. 1, the 
nut and bolt are interlocked by the three threads 
'F1-T 3 with the axial distance 11 between consecutive 
threads. The load-bearing cross-sectional areas (A) of 
the nut (index N) and bolt (index B) are assumed to be 
A N and AB and their elastic moduli E N and E B, 
respectively. The forces F8 are applied to the bolt 
while the nut is supported by the forces F N. If there is 
any portion dF of the forces F B transmitted to the nut 
via the first thread T1, the remaining force F - dF will 
have to be transmitted by one of the other threads. 
The segment 11 of the bolt between the first and the 
second thread will be under tension and, thus, be 
elongated by an amount 

F -- dF 
dl m - 11 

EBAB 

d S  + S N -1- S N 
dI 1 = ( F - d F ) I  1 SN(SN + dS) 

2S N + d S  

= (F - d F ) l  1SZ + SNdS 

For dS = 0, the case of identical stiffnesses of bolt and 
nut, this results in an interfacial displacement 

2 
dl 1 = (F - d F ) l l  ~NN 

and for d S = S  N and d S = 9 S  N, equivalent to 
S~ = 2S~ and SB = 10SN, 

3 
dI 1 = (F - dF)112SN 

and 

11 
dll = (F - dF) l 1 -  

10SN 

Thus, the larger the stiffness of the bolt the smaller the 
interfacial displacement and, thus, the interfacial shear 
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T A B L E  I The (normalized) interracial displacement dl 1 (as an indication of the interfacial shear stresses) as a function of the stiffness 
differences dS between the nut and the bolt 

d S = S ~ - S  N d S = 0 ,  S B = S  N dS=SN,  S B=2SN dS=9SN.  SB= 10SN 
(isoeI. case) (CoCrMo on bone) 

d l iSN/ l i (F  - dF) 2 1.5 1.I 

stresses, as can clearly be realized from the summary 
given in Table I. The stiffness ratio of 1:10 is about 
equivalent to the stiffness ratio between cortical bone 
and the Co-based alloys. In a similar manner it can be 
shown that, in the case of a tensional force acting on 
the nut on its opposite surface, the loads will be 
concentrated on the two most outside threads only. 

2.2. Th e  nu t  and  shaf t  mode l  
The nut and bolt model can be refined by increasing 
the number of threads and simultaneously decreasing 
their thicknesses and distances until the situation of a 
homogeneously bonded system is reached (Fig. 2) 
[15]. This model can be used to quantitatively derive 
the shearing forces along the nut and shaft interface. 
The outside boundaries are assumed to be rigidly 
fixed. 

The forces Fy acting on any segment of the shaft 
with the width d'y (d' indicating a "difference") in 
static equilibrium can be described (Fig. 2) as 

~ F y  = O: P(y) - P ( y  + d ' y ) -  ~A = 0 

(1) 

where the deformations resulting from the outside 
force are 

dZt'l 2 
P(y) = c~yna 2 = Escyna 2 = Esd , f  na 

d'u 
t;y - -  

d'y 

with the normal stress and strain cry and ~y, respect- 
ively, in the y direction and the shear strain along the 
cylindrical shaft to nut interface being 

u ( y ) -  u(w) u(y) 
= G N - -  G N - -  

1 l 

and the interfacial area 

A = 2nad'y 

(It should be noted that E s and G N refer to the elastic 
modulus of the shaft and shear modulus of the nut, 
respectively). Substituting the area A into Equation 1 
and dividing through by d'y yields 

P(y) - P (y  + d'y) 
d'y 

- 2rcza = 0 

which, in changing from differences to differentials 
(from d' to d), can be written as 

dP 
2nra = 0 (2) 

dy 
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Figure 2 Nut and shaft model with characteristic variables used 
in the text: P = pulling force, a = radius at nut-shaft interface, 
l - outer radius of nut (l - a - constant), u(w) = point at wall, 
u(a,y)  =displacement in y direction at nut-shaft interface, 
d'y = (differential) shaft segment in y direction. 

and, using the definitions following Equation 1, 

; ( E s n a Z ; )  - ~ 2nau(y) = 0 

which can be reduced to 

d2u 2GN 
dy 2 Esal u(y) = 0 (3) 

Equation 3 is a second-order linear differential equa- 
tion with real constant coefficients. Its solution (for the 
boundary condition as y ~ oe, p-~ 0, and with E N 
and VN refering to the elastic modulus and Poisson's 
ratio of the nut, respectively) yields for the interracial 
shear stress 

o )1/2  1121 
P exp -- Esal(~ + VN)) YJ ~ a  

or, using the correlation between the shear and elastic 
moduli GN = EN/[2(1 + VN)], 

( E  N )1/2  

P Es(l vN)al - 2ha + 

With the introduction of the ratio of the two elasti- 
cities as EN/E s = R and summarizing all other terms 
in constants, this equation can be used to express the 
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2.3. The punching model 
Another approach to the description of the interfacial 
stresses in a truely isoelastic case can be derived from 
the theory of punching. 

If a punch is resting on a half-space as indicated 
schematically in Fig. 4, the cylinder underneath the 
punch with radius a (which is to be punched out) will, 
of course, be isoelastic with regard to the surrounding 
material and, in addition, will be bonded to it homo- 
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Figure 3 Interracial  shear  as a function of the ra t io  of the elastic 

modul i  fol lowing from the nu t  and  shaft model  accord ing  to 

E q u a t i o n  4 wi th  c '  = c"  = y = 1. 
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Figure 4 Punch  P on half-space. 

geneously. As far as implants are concerned, this type of 
bonding will be the most ideal case, as hoped may be 
obtainable with bioactive materials like hydroxyl- 
apatite ceramics [16]. 

To derive the stress components along the surface of 
the cylinder, first, a single, infinitely long, line-shaped 
load acting on a half-space is considered as shown in 
Fig. 5 [17]. With this load per unit line length p, it can 
be shown that [17] 

(50 = "~r0 = 0 

Also, with the sum of all forces in the y-direction 
being equal to zero (principle of static equilibrium), it 
follows that 

f 
n/2 

~Fy  = 0: - P + ~ c o s 0 r d 0  
n/2 

and with ~ = C cosO/r (C = some constant) 

~ rc/2 

P = C e o s 2 O d O  

" J -  n/2 

= 0 

yielding C = 2P/n,  resulting an % = ( - 2P/nr)cosO. 

For a plane at a distance y parallel to the surface of 
the half-space, the normal and shear components of 
the stress at a point C (Fig. 6) T and M can be found 
using the equations in accordance with Mohr's circle 

O- r q- O- 0 (3" r 
+ - O0cos20 + zr0sin20 C~x - 2 2 

oY - ~ +2 ~o ~ -2 Cr°c°s20 + r~°sin20 

~ - ~o sin20 + r<oCOS20 "CxY = 2 

This gives for the stresses indicated in Fig. 7 

- 2Pcos40 O- x -- 
rty 

_ 2Psin20cos20 
O'y ~- 

ny 

- 2Psin0cos30 
V~xy 

ny  

% =  0 

%°=~ _ I / 

- X  -"" / 

%cos 

dependence of the shear forces on the variation of the 
differences of the elastic moduli for any given inter- 
facial position y: 

= - c 'R  1/2 exp - [(c"R)l/2y] (4) 

Keeping E y = constant and, thus, also v N = constant, 
and letting E s increase from 1 (the isoelastic case) to 10 
(the elasticity ratio of Co-based alloys to cortical 
bone), the dependence of the interracial stress can be 
plotted as a function of the ratio R = E N / E  s as shown 
in Fig. 3 ( E  N = 1, c' = c" = 1, y = 1). 

Thus, the highest interracial stresses do occur in the 
isoelastic situation. The dependence of the stresses on 
the length of the bolt (y) yields a stress concentration 
at the entrance of the bolt into the nut (at y = 0) and 
an exponential decrease for deeper penetrations 
(increasing y). 

Y 

Figure 5 Single l inear  load on  a half-space with ind ica t ion  of radial  

componen t  of stress. 
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If the load P is applied at a distance f2 away from the 
origin (Fig. 8), this must be rewritten 

- 2Py 3 
( J x  - -  

7~? ,4 

- 2 P ( x  + ~ ) 2 y  
% = (5) 

7I/, .4 

r~y = 2P(x + f2)y 2 

If these loads P are applied continuously between the 
limits 

x =  - a  <~ ~ <~ x = + a 

the resulting stresses in the infinite half-space subject 
to the combined action of these loads can be found by 
integration of Equations 5 between these limits (with 
P0 being the total load within these limits), using 
standard mathematical tables: 

(3" x = 

tan1  i ,21 

rx,= ~ i x - a )  2 + y 2 - ( x + a )  2 + y 2  

- Po [ (x + a ) (x + a)y 
tan-~ - -  - 

7~ (X -t- a) 2 -t- y2 

(x  - a ) y  
- t a n - l ( x  y ~ a )  + ( x _ a ~ 2 ~ y 2  1 

Po [ t an_ l  (x  + a ) (x + a)y 
. . . . . . .  + (x + a) 2 + y2 

(6) 

These stress components were calculated with the 
values P = 1, a = 1, x varying from 0 to 10 in incre- 
ments of 0.1, and y = 0.1, 0.5, 0.9, 0.991, 1.001, 1.1, 1.5, 
1.9 and are presented graphically in Figs 9, 10 and 11. 
Each graph contains 13 plotted points corresponding 
to the depth values y = 0, y = 0.1, and y = 1 to 10 in 
integer steps. Note that x = 1 represents the (hypothe- 
tical) walls of the cylinder underneath the edges of the 
punch (because of the tangent function, there is a 
discontinuity at y -- 0 and x = a). 
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Y 

Figure 6 As Fig. 5 to demonstrate internal equilibrium of forces 
acting on the volume element C. 

3. Discussion 
All three evaluations of the problem of interfacial 
stresses at the junction of two components use differ- 
ent approaches. All of them do show a marked con- 
centration of the stresses at the entrance of this device 
into its encagement. The first two evaluations, the bolt 
and nut as well as the shaft and nut models, express 
this stress concentration as a function of the ratio of 
the elastic moduli of the materials concerned. Their 
results show that this concentration becomes more 
pronounced as the state of isoelasticity is approached. 

Thus, it must be generally concluded for stem or 
post-shaped load-beating and transmitting implants 
that 

(i) the shear forces between the implant and the 
surrounding bony tissue will always be the highest at 
the interfacial area closest to the zone of load applica- 
tion, and 

(ii) the degree of this interfacial stress concentration 
increases as the state of isoelasticity (or, rather, equal- 
ity of stiffness) is approached. 

The concept of isoelastic implants had mostly been 
suggested for the anchorage of total hip replacements 
[-10. 18]. But, of course, there is no reason not to 
consider this concept for other hard-tissue replace- 
ments, as had been done for dental implants [12]. In 
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Figure 7 As Figs 5 and 6 to demonstrate the 
normal and shearing components  acting on a 
volume element M in rectangular coordinates at 
a distance y from the surface of the half-space. 
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Figure 8 Load P on half-space as in Fig. 7 but shifted 
from the origin in the - x direction by the amount D: y = r cos 0, 
x =  f~ + r sin0, r = [3; + (x + f/)211/2 

all these considerations the conclusions mentioned 
above must be kept in mind. If the interracial stress 
concentrations cause pressure necrosis or surpass the 
fatigue limit of the implant material locally, a stiffer 
implant must be chosen. However, an isoelastic im- 
plant can be used and may even be the solution of 
choice if a high stress concentration appears to be 
desirable at that location, provided the stresses do not 
surpass the above limits. 

In total hip surgery, some concentration of load 
transfer from (collarless) stems into the femur in the 
area of the calcar femoris is desirable from the point of 

view of avoiding disuse atrophy in the proximal femur. 
Thus, if the limits mentioned above are not surpassed, 
isoelastic stems can be considered. 

The stress concentrations resulting from the calcu- 
lations presented here and those given elsewhere 
[11--13] seem to contradict the conclusions of strain- 
gauge measurements of loaded models or cadaver 
femurs carrying implants of different stiffnesses (e,g. 
[181). They report on deformations of the outside 
contour of the femur which more closely approach the 
natural situation for isoelastic than for stiffer stems. If 
a bond was provided at all in these measurements as 
assumed to exist in our calculations, the solution of 
this apparent discrepancy may be provided by the 
considerations of the previous paragraph. The concen- 
tration of the load transfer to the calcar area is very 
close to the natural case, and the bending behaviour of 
the more distal portions of the isoelastic stem will alter 
the deformation behaviour of the femur less than a 
stiffer stem. 

In dentistry, isoelastic implants have been taken 
into consideration in order to account for the rela- 
tively large deformations of the mandible and the still 
larger deformations in the maxilla [19] during swal- 
lowing and biting. The stiffer and more extended the 
implants are, the larger the forces which must be 
supported by the interfacial bond between the im- 
plants and the adjacent bony tissue. These interracial 
stresses are hoped to be minimized if the implant can 
deform in a manner similar to the surrounding bone. 
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Figure 10 Normal stresses in the y direction as a 
function of depth (y direction) for different cylin- 
drical surfaces (x) according to Equation 6. 
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Figure 11 Shear stresses for different cylindrical 
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according to Equation 6. (a) x = ( [ ] )  0.1, 
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The results of the calculations presented above do not 
exclude this possibility. On the contrary, their due 
consideration rather allows the best compromise be- 
tween the desired deformability and the necessity to 
avoid stress concentrations to be found. 
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